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question 1

Part (1): Let R := Z[i] and I ◁ R := 2Z[i]. Let x ∈ Z[i] = p + qi, with i2 = −1. We

will consider the cosets x = {p+ qi + 2a+ 2bi : a, b ∈ Z}. For brevity, p, q are always

fixed integers, and a, b ∈ Z, r, s ∈ Z are arbitrary.

p, q ≡2 0 Let x = {q+ qi + 2a+ 2bi : a, b ∈ Z}. This is {2r + 2si : r, s ∈ Z}, since p, q ≡2 0.

Thus x ∈ I =⇒ x = 0.

p, q ≡2 1 x = {p+qi+2a+2bi} = {p+2a+(q+2b)i} = {2r+1+(2s+1)i} = {1+ i+2r+2si}.
Thus, x = 1 + i

p ≡2 1, q ≡2 0 x = {p + qi + 2a + 2bi} = {1 + 2r + 2si} =⇒ x = 1

p ≡2 0, q ≡2 1 x = {p+qi+2a+2bi} = {p+2a+(q+2b)i} = {2r+(2s+1)i} = {i+2r+2si} =⇒
x = i

Since all cases for p, q have been covered (odd/odd, etc.), the set {0,1, i,1 + i}
represents all cosets. If any two of these were equal, then their difference would

have to be in 2Z[i], i.e. be 0 = 2r + 2si, which is not true. We conclude that the

cosets represented by {0, 1, i, 1 + i} are disjoint. Checking, one sees that
0 − a for a ∈ {1, i, 1 + i}
is . 0. The remaning cases
are: 1 + i − 1 = i , 0, 1 + i −
i = 1 , 0, and
1 − i = 1 − i , 0.

Part (2):

+ 0 1 i 1 + i

0 0 1 i 1 + i

1 1 0 1 + i i

i i 1 + i 0 1

1 + i 1 + i i 1 0

× 0 1 i 1 + i

0 0 0 0 0

1 0 1 i 1 + i

i 0 i 1 1 + i

1 + i 0 1 + i 1 + i 0

Part (3): R/I is not a field. In order for this to be true, all non-zero elements must

have a multiplicative inverse, but 1 + i has none (see chart). Furthermore, R/I

is not isomorphic to Z/4Z. To see this, let ϕ(r) be an isomorphism sending ϕ :

Z[i]/2Z[i]→ Z/4Z. Then ϕ(2r) = ϕ(0) = 0 mod 4. However, ϕ(2r) = ϕ(r) + ϕ(r).

Since ϕ is bijective, ϕ(r) maps to a unique s ∈ Z/4Z, and the entirety of Z/4Z is

mapped.

We then have that 2s = 0 mod 4 ∀s ∈ Z/4Z, which is not true (take s = 1)  
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question 2

Part (1): Let Q[
√
p] := {a + b

√
p : a, b ∈ Q}, with p prime. Clearly Q[

√
p] ⊆ R. The

remaining conditions are:

0, 1 in set Let a = 1, b = 0. Then 1 ∈ Q[
√
p]. Similarly, letting a, b = 0, we see that 0 ∈ Q[

√
p].

Closed under + Let x, y ∈ Q[
√
p] with x = a + b

√
p and y = c + d

√
p. Then x + y = (a + c) + (b + d)

√
p.

Since Q is a ring, a + c, b + d ∈ Q, so x + y ∈ Q[
√
p].

Closed under × Using the definitions from above, xy = (a+ b
√
p)(c + d

√
p) = ac + bdp + (bc + ad)

√
p,

so xy ∈ Q[
√
p].

Additive inverse For x = a + b
√
p, define −x := −a − b√p. Then x + (−x) = a − a + (b − b)

√
p = 0

Q[
√
p] is also a field. Let x = a + b

√
p, and define x−1 := 1

a+b
√
p . Clearly, xx−1 = 1, but we

need to show that x−1 can be written as r + s
√
p for some r, s ∈ Q:

1
a + b

√
p

=
a − b√p
a2 − b2p

=
a

a2 − b2p
+

b2

b2p − a2
√
p = r + s

√
p

since Q is closed under multiplication and addition.

Part (b): We’ll use the first isomorphism theorem. Consider

ϕ : Q[x]→ Q[
√
p] : qnx

n + ... + q1x + q0 7→ qn
√
pn + ... + q1

√
p + q0

It is not immediately obvious that qn
√
pn + ... + q0 ∈ Q[

√
p]. wlog, assume that n is even.

We can regroup as follows:

(qn
√
pn + qn−1

√
p
√
pn−2) + ... + (q2

√
p2 + q1

√
p) + q0

For any qi
√
pi + qi−1

√
p
√
pi−2, we have that

√
pi−2 is an integer.

√
pi is also an integer.√

pi−2 = p
i−2
2 , where i−2

2 is
a positive integer, as i − 2 is
even. =⇒ qi

√
pi + qi−1

√
p
√
pi−2 ∈ Q[

√
p], and since Q[

√
p] is closed under addition, the whole

sum ∈ Q[
√
p].

If we had let n be odd, write
qn
√
pn = qn

√
p
√
pn−1, where

√
pn−1 is an integer. One

groups from the qn−1 term
onward, and the proof is
identical.

To show that ϕ is surjective, take any a + b
√
p ∈ Q[

√
p]. Then, a + bx maps to a + b

√
p.

Lastly, we need that I = ker(ϕ) = ⟨x2 − p⟩. One sees that x2 − p 7→ √p2 − p = 0, so
x2 − p ∈ I . Moreover, since I must be an ideal of Q[x], (x2 − p)q(x) ∈ I for any q(x) ∈ Q[x],
so ⟨x2 − p⟩ ⊆ I .

Since Q is a field, any ideal of Q[x] is principal, so I = ⟨f ⟩ for some unique f . We have
now that x2 − p ∈ ⟨f ⟩, so f |x2 − p. Note that x2 − p is irreducible over Q[x] (see that the
root

√
p < Q), so f ∼ 1 or f ∼ x2 − p. If f ∼ 1, then ⟨f ⟩ = Q[x], which is clearly not the

kernel.
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=⇒ f ∼ x2 − p =⇒ I = ⟨f ⟩ = ⟨x2 − p⟩. By the first isomorphism theorem, we have that
Q[
√
p] � Q[x]/⟨x2 − p⟩

There is a ring isomorphism mapping Q[
√
p] 7→ Q[x]/⟨x2 − p⟩



Assignment 5 4

question 3

Part (1): We want a finite field with exactly 27 = 33 elements. This is F3/⟨f ⟩, where

deg(f ) = 3 is an irreducible polynomial in F3. One can take f (x) = x3 − x + 1. We

check that this is irreducible by seeing it has no roots in F3:

f (0) = 1 f (1) = 1 f (2) = 7 ≡3 1

Thus, F3/⟨x3 − x + 1⟩ is a field with 27 elements.

Part (2): Suppose t2 + 1 were irreducible in the field defined above. Then it

would have a root, and so t2 + 1 = 0 =⇒ t2 = −1 = 2. Since all elements of

F3/⟨x3 − x + 1⟩ are defined for a unique polynomial of degree less than deg(f ) = 3,

write t := ax2 + bx + c and consider:

t2 = (ax2 + bx + c)2 : a, b ∈ F3 =⇒ a2x4 + 2abx3 + (b2 + 2ac)x2 + 2bcx + c2 = 2

Since x3 − x + 1 = 0, we have x3 = x − 1. Furthermore, x4 = x · x3 = x(x − 1) =

x2 − x. We then have

⋆ (a2 + b2 + 2ac)x2 + (2ab + 2bc − a2)x + (c2 − 2ab) = 2

Our requirements then are that c2 = 2ab+ 2 (the constant term), 2ab+ 2bc− a2 = 0

(the x term), and a2 + b2 + 2ac = 0 (the x2 term). In F3, c could be 0, 1 or 2.

If c = 1, then 1 = 2ab + 2 =⇒ −1 = 2ab =⇒ 2 = 2ab =⇒ ab = 1. This happens

only when a = b = 1 or a = b = 2.

When a = b = 1, we plug in to find 1 + 1 + 2 = 4 = 1 , 0 for the x2 term. When

a = b = 2, we get 8 + 4 − 4 = 2 , 0 for the x term, so both lead to contradictions,

and c , 1.

Suppose now that c = 0. Then 0 = 2ab + 2 =⇒ −2 = 2ab =⇒ ab = −1 =⇒ ab =

2. This happens only if a = 1, b = 2, or vise-versa.

When a = 1, b = 2, we get 1 + 4 = 2 , 0 for the x2 term. When a = 2, b = 1, we get

4 + 1 = 2 , 0 again. Both lead to contradictions, so c , 0.

Finally, take c = 2. Then c2 = 4 = 1 = 2ab + 2. As above, we find that a = b = 1

or a = b = 2. When a = b = 1, we one finds that 2 + 4 − 1 = 5 = 2 , 0 for the x
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term. When a = b = 2, then 4 + 4 + 8 = 16 = 1 , 0 for the x2 term. Both lead to

contradictions, so c , 2.

=⇒ No polynomial t exists s.t. t2 + 1 = 0, and we are done.
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