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QUESTION 1

Part (1): Let R := Z[i] and I <R := 27Z[i]. Let x € Z[i] = p + qi, with i = —1. We
will consider the cosets X = {p+ qi + 2a+ 2bi : a, b € Z}. For brevity, p, q are always
fixed integers, and a,b € Z, r, s € Z are arbitrary.

p,q=;0 Letx ={q+qi+2a+2bi:abeZ} Thisis {2r+2si:r,s € Z}, since p,q =, 0.

Thusxel — x=0.

p.q=,1 Xx={p+qi+2a+2bi} ={p+2a+(q+2b)i} = {2r+1+(2s+1)i} = {1+i+2r+2si}.

Thus, x =1+
p=21,g=,0 X={p+qi+2a+2bi}={1+2r+2si} = x=1

p=,0,g=1 X={p+qi+2a+2bi}={p+2a+(q+2b)i} = {2r+(2s+1)i} = {i+2r+2si} =
E -

1

Since all cases for p, g have been covered (odd/odd, etc.), the set {0,1,1,1 + i}
represents all cosets. If any two of these were equal, then their difference would
have to be in 2Z[i], i.e. be 0 = 2r + 2si, which is not true. We conclude that the

cosets represented by {0, 1,1, 1 + i} are disjoint. Checking, one sees that
O-aforae{l,i1+i)
Part (2): is # 0. The remaning cases
z}re:ﬁl+fi—T:i¢6,l+i—
. . . i=1=0,and
o [ 1 | i |1+ x | o | 1| i 1+ {515 e
0 0 1 1+1i 0 0 0 0 0
1 1 0 1+1 i 1 0 1 i 1+1
i i |1+i| O 1 i 0 i 1 | 1+1
T+i||1+i| 1 0 1+i 0O |1+i|1+i| O

Part (3): R/I is not a field. In order for this to be true, all non-zero elements must
have a multiplicative inverse, but 1 + i has none (see chart). Furthermore, R/I
is not isomorphic to Z/4Z. To see this, let ¢(r) be an isomorphism sending ¢ :
Z[i)/2Z[i] — Z/AZ. Then ¢(2r) = ¢(0) = 0 mod 4. However, ¢(2r) = ¢(7) + ¢(7).
Since @ is bijective, ¢(7) maps to a unique s € Z/47Z, and the entirety of Z/4Z is
mapped.

We then have that 2s = 0 mod 4 Vs € Z/47Z, which is not true (take s = 1) 4
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QUESTION 2

Part (1): Let Q[/p] := {a + by/p : a,b € Q}, with p prime. Clearly Q[y/p] € R. The

remaining conditions are:

0,Tinset Leta=1,b=0.Then 1 € Q[/p]. Similarly, letting a, b = 0, we see that 0 € Q[+/p].

Closed under + Let x,y € Q[y/p] withx =a+bypand y = c+d+/p. Then x +y = (a+c) + (b + d) /p.

Since Qisaring, a+c¢,b+d e Q,sox+y € Q[/p]

Closed under x Using the definitions from above, xy = (a + b+/p)(c + d+/p) = ac+ bdp + (bc + ad)+/p,

so xy € Q[/p].

Additive inverse For x = a + b4/p, define —x := —a— b/p. Then x + (-x) =a-a+(b-b)\/jp =0

. ﬁ . .
\/171_2 = p 2, where % is
a positive integer, as i — 2 is
even.

If we had let n be odd, write
4nVP" = dnyPVP" ™!, where
Vp" ! is an integer. One
groups from the g,,_; term
onward, and the proof is
identical.

Q[y/plis also a field. Let x = a + by/p, and define x™! := Wﬁ' Clearly, xx™! = 1, but we

need to show that x! can be written as r + s\p for some r,s € Q:

1 a—byp a b?
- az—b2p+b2p—a2\/ﬁ:r+sﬁ

a+byp a’-b2p

since Q is closed under multiplication and addition.

Part (b): We'll use the first isomorphism theorem. Consider

¢ :Q[x] > Q[Vp]: qux" + .. + q1x+ qo > g\ + o+ G1VP + 90

It is not immediately obvious that q,/p" + ... + g9 € Q[/p]. WLOG, assume that 7 is even.

We can regroup as follows:

(@uVD" + G VPVE"2) + o+ (G2VP” + 1VP) + G0

For any qi\/ﬁi +qi1 \/ﬁ\/ﬁi_z, we have that \/ﬁi_z is an integer. \/ﬁi is also an integer.

= qi\/;_)i +gi1 \/ﬁ\/;_)i_z € Q[/p], and since Q[+/p] is closed under addition, the whole
sum € Q[+/p].

To show that ¢ is surjective, take any a + b+/p € Q[+/p]. Then, a + bx maps to a + b+/p.

Lastly, we need that I = ker(¢q) = (x> — p). One sees that x> — p > \/;_72 -p=0,s0
x% — p € I. Moreover, since I must be an ideal of Q[x], (x> — p)q(x) € I for any q(x) € Q[x],
so(x*-pyCl.

Since Q is a field, any ideal of Q[x] is principal, so I = (f) for some unique f. We have
now that x? — p € (f), so f|x*> — p. Note that x? — p is irreducible over Q[x] (see that the
root \/p € Q),so f ~1or f ~x?>—p.If f ~ 1, then (f) = Q[x], which is clearly not the
kernel.
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= f~x?>-p = I=(f)=(x*-p). By the first isomorphism theorem, we have that

Qlyp] = Qlx/(x* - p)
There is a ring isomorphism mapping Q[/p] — Q[x]/(x* - p) O
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QUESTION 3

Part (1): We want a finite field with exactly 27 = 33 elements. This is F3/({f), where
deg(f) = 3 is an irreducible polynomial in F5. One can take f(x) = x> — x + 1. We

check that this is irreducible by seeing it has no roots in Fj:

fO)=1 f()=1 f(2)=7=;31
Thus, F5/(x3 — x + 1) is a field with 27 elements.

Part (2): Suppose t> + 1 were irreducible in the field defined above. Then it
would have a root, and so 2+1 =0 =— 2 = —1 = 2. Since all elements of
F3/(x®> — x + 1) are defined for a unique polynomial of degree less than deg(f) = 3,

write t := ax? + bx + ¢ and consider:

2= (ax’> +bx+c¢)>:a,beF; = a’x*+ 2abx3 + (b2 + 2ac)x? + 2bcx +c2 =2

Since x3 — x+ 1 = 0, we have x3 = x — 1. Furthermore, x* = x-x3 = x(x - 1) =
x2 — x. We then have

*  (a®+ b+ 2ac)x® + (2ab + 2bc — a®)x + (¢* — 2ab) = 2

Our requirements then are that c> = 2ab + 2 (the constant term), 2ab + 2bc—a® = 0
(the x term), and a” + b? + 2ac = 0 (the x* term). In I3, ¢ could be 0, 1 or 2.

Ifc=1,thenl =2ab+2 — -1=2ab — 2 =2ab = ab = 1. This happens

onlywhena=b=1ora=5b=2.

Whena=b=1,we plugintofind1+1+2=4=1=0 for the x? term. When
a=b=2,weget8+4—-4=2=0 for the x term, so both lead to contradictions,

and c = 1.

Suppose now that c = 0. Then0=2ab+2 — -2=2ab — ab=-1 = ab=

2. This happens only if a = 1, b = 2, or vise-versa.

Whena:l,b:2,weget1+4:2¢0forthex2term.Whena:2,b:1,weget

4 +1 =2 # 0 again. Both lead to contradictions, so ¢ = 0.

Finally, take ¢ = 2. Then c2=4=1=2ab+2. As above, we find thata = b = 1
ora=b=2.Whena=0b=1,weonefindsthat2+4-1=5 =2 = 0 for the x
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term. Whena=b=2,then4+4+8 =16 =1 # 0 for the x? term. Both lead to

contradictions, so ¢ = 2.

— No polynomial ¢ exists s.t. t2 + 1 = 0, and we are done.



	
	Question 1
	Question 2
	Question 3

